Fourier series with coefficients in a Banach space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Fourier Coefficients of Eisenstein Series

In this paper we wish to prove that under certain conditions the Fourier coefficients of the Eisenstein series for an arithmetic group acting on a tube domain are all rational numbers. Let G be a connected, simply-connected, semisimple, and almost Q-simple linear algebraic group defined over the rational number field Q. Let R be the real number field. Then GR is connected, and we assume that if...

متن کامل

Fourier coefficients of sextic theta series

This article focuses on the theta series on the 6-fold cover of GL2. We investigate the Fourier coefficients τ(r) of the theta series, and give partially proven, partially conjectured values for τ(π)2, τ(π2) and τ(π4) for prime values π.

متن کامل

Power-monotone Sequences and Fourier Series with Positive Coefficients

J. Németh has extended several basic theorems of R. P. Boas Jr. pertaining to Fourier series with positive coefficients from Lipschitz classes to generalized Lipschitz classes. The goal of the present work is to find the common root of known results of this type and to establish two theorems that are generalizations of Németh’s results. Our results can be considered as sample examples showing t...

متن کامل

Fourier Series in Banach spaces and Maximal Regularity

We consider Fourier series of functions in L(0, 2π;X) where X is a Banach space. In particular, we show that the Fourier series of each function in L(0, 2π;X) converges unconditionally if and only if p = 2 and X is a Hilbert space. For operator-valued multipliers we present the Marcinkiewicz theorem and give applications to differential equations. In particular, we characterize maximal regulari...

متن کامل

Determination of a jump by Fourier and Fourier-Chebyshev series

‎By observing the equivalence of assertions on determining the jump of a‎ ‎function by its differentiated or integrated Fourier series‎, ‎we generalize a‎ ‎previous result of Kvernadze‎, ‎Hagstrom and Shapiro to the whole class of‎ ‎functions of harmonic bounded variation‎. ‎This is achieved without the finiteness assumption on‎ ‎the number of discontinuities‎. ‎Two results on determination of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1944

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1944-08195-0